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In 1977, mathematician Robert Connelly discovered a unique 
eighteen-sided closed, hinged polyhedron that, remarkably, 
wiggled, overturning centuries of mathematical discourse 
linking polyhedra with rigidity.  This new category of polyhe-
dra is the source of an ongoing interdisciplinary collaboration 
between architecture and discrete geometry. The flexible 
polyhedron serves as a generative design tool to develop 
a new approach to structure and a new relationship of the 
body in space, as well as an analytical lens through which 
to understand and challenge the history of architecture’s 
close association with upright rigidity. In the late 1960s, the 
Architecture Principe Group (Paul Virilio and Claude Parent), 
argued against propriety and restraint with a theory of the 
body that challenged upright posture. The oblique function 
replaced a system of rigid proportions of a universal body 
at rest in Euclidean space with the figure of the dancer put 
in motion by the forces of gravity on the oblique. However, 
Virilio laments their non-orthogonal system of continuous 
folded planes became “all blobs, blobs, blobs.” 

Taking topological thinking filtered through Deleuze, Greg 
Lynn and others harnessed emerging computer technology 
to produce infinite variations of doubly-curved, amorphous 
spheres. The seamless smoothness of “animate form”, how-
ever, ensured mathematical rigidity, a result of which Lynn is 
undoubtedly aware as he employs new robotic technologies 
to re-animate his forms. In this context, flexible polyhedra 
are both incredibly simple geometric forms in a world of 
complex-curved topological spheres; and much more com-
plex, capable of flexibility without abandoning geometry or 
rigidity and without cutting-edge technologies. To borrow a 
phrase, the flexible polyhedron is both square and groovy. 
This ongoing interdisciplinary project reveals the false dis-
tinction between geometry and topology as interpreted by 
the architectural discipline, and explores the architectural 
ramifications of this new world of flexible polyhedra while 
using material/spatial practice to further understand and 
represent topology.

FLEX
In 1977, Robert Connelly stunned the mathematics community 
when he discovered a polyhedron that flexed. In particular, the 
polyhedron was made of 18 triangular faces attached along 
hinged edges. Until then, most mathematicians believed that 
all polyhedra were structurally rigid, influenced by the 1813 
proof by Augustin Cauchy guaranteeing rigidity for the con-
vex case. While the near entirety of polyhedra stand upright 
and rigid, the Connelly polyhedron, and its later simplification 
by Klaus Steffen, moved and slouched, and, depending on its 
orientation, appeared to fall to the side. Like the purposeful 
counterpoise popularized by the likes of Steve McQueen, this 
new family of flexible polyhedra adopt a contrapposto stance 
that similarly transgresses the norm of rigid, upright posture. 

The architectural implications are significant and wide-ranging. 
The discipline of architecture from Vitruvius to Le Corbusier is 
largely, however implicitly, built on the presumption of rigid-
ity, reinforced by the association of the body and the building 
and their shared investment in uprightness against the force 
of gravity.1 It is so fundamental as to be rarely considered, let 
alone challenged.

A generation of architects emerging in the 1990s, led primarily 
by Greg Lynn, tackled and sought to displace uprightness and 
rigidity with fluid, folded surfaces. Influenced by topological 
thinking filtered through the writing of Gilles Deleuze, theorists 
of the fold set up a dichotomy between rigid, tectonic geom-
etry and flexible, continuous topology exemplified by the form 
of the blob.2 It is not without irony, however, that the curved 
animate forms generated in the computer, all but guaranteed 
geometric rigidity when they were baked and made tangible. 
In fact, the current interest in moving architecture by many of 
the same architects reflects the desire to recapture the fluid 
transformations achieved virtually twenty-five years ago.

Flexible polyhedra, although discovered before the architec-
tural interest in the fold, reveal the false distinction between 
the rigidity of geometry and the flexibility of topology. They 
exhibit two extreme positions of rigidity with a range of 
motion that transforms the space it encloses. Using flexible 
polyhedra, we theorize a new relationship between the body 
and architecture that builds on Parent and Virilio’s oblique 
function, one where both the body and the architecture are 
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put into motion and oscillate between moments of equilibrium 
and disequilibrium.3 This work seeks to recuperate the interro-
gate and open architecture to new postures and bodies. Lastly, 
it opens up new possibilities for moving architecture that is 
both structurally rigid and flexible simultaneously without the 
use of external or internal apparatus.

“FOLDING IN ARCHITECTURE” 
Topology was created and set in distinction to geometry most 
famously by Leonhard Euler with the “Königsberg bridge” 
problem. Euler dismissed typical geometrical data such as 
length and distance and instead examined only notions of 
adjacency to determine if it was possible to cross each of 
the seven bridges of Königsberg exactly once. Indeed, geo-
metric data presented an obstacle to the bridge solution by 
introducing extraneous information, clouding the underlying 
structure.4 In general, topology emphasizes the foundational 
structures such as adjacency, connectedness, orientability, 
and boundary, while geometry builds upon this with the 
added notion of length (denoted as a metric in mathematics), 
from which all means of measurements arise (such as area, 
volume, and angles). In his seminal work in the 19th century, 
Bernhard Riemann showed that a topological space allows for 
numerous types of metrics, each of which yields a different 
geometric space. For example, classical shapes such as spheres 
and cubes are both geometric in nature, with measurements 
of length allowing calculations of shortest distances between 
two points. Yet both shapes are identical topologically, and 
easily allow twisting, contortions, and the like while maintain-
ing their identity as spheres.

Topologically defined surfaces and shapes served as the basis 
for an emerging architectural discourse in the 1990s framed 
in distinction to the extant dominant discourse of deconstruc-
tivism. Lynn argued: “Both Venturi and Wigley argue for the 
deployment of discontinuous, fragmented, heterogenous and 
diagonal formal strategies based on incongruities, juxtaposi-
tions and oppositions within specific sites and programmes.”5 
A new dichotomy was constructed that put divergent figures 

like VSB and Wigley along with Tschumi and Gehry under an 
umbrella of tectonic geometry in contradistinction to the new 
continuous topological surface capable of absorbing com-
plexity and difference without dissolving into a homogeneous 
form. Lynn continues: “Pliancy allows architecture to become 
involved in complexity through flexibility. It may be possible 
to neither repress complex relations of differences with fixed 
points of resolution nor arrest them in contradictions, but sus-
tain them through flexible, unpredicted, local connections.”6 
The baking technique of folding was used as a metaphor for 
the way ingredients can be woven together while remaining 
separate. Distinct, measurable geometric shapes (Fig. 1a) 
could be draped and connected with a continuous surface 
that folds over and absorbs them without losing the underly-
ing geometry (Fig. 1b). 

A series of roof structures designed by Shoei Yoh served as 
an example of the way a continuous surface could integrate 
particularities like structural spans, beam depths, lighting, lat-
eral loading, and ceiling heights. Rather than average or unify 
the disparate elements, they were absorbed into a continuous 
roof surface. Yoh’s roof structures were conceptually compel-
ling examples of the promise of a topological approach to 
architecture, a smooth surface that could incorporate defor-
mations and different spatial/formal/structural conditions as 
necessary, producing a unique but arbitrary curved geometry.7 

The theory of the topological fold intersected with emerg-
ing computer technology, specifically the incorporation of 
differential calculus algorithms in computer aided design soft-
ware to produce the blob. The blob came to exemplify the 
formal/spatial realization of the theory of the fold, a natural 
extension from Yoh’s roof structures that saw the removal of 
any evidence of geometry in favor of an amorphous sphere 
subjected to force parameters (Fig. 1d). Blobs became a new 
category of forms “defined not by what they [were], but by 
the way they change[d] and by the laws that describe[d] their 
constant variations.”8

Figure 1. Diagrams moving from polyhedra to topological sphere. Image by authors.
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Despite endless geometric variation, however, the blob is 
always, topologically speaking, the same. In fact, it is quite 
primitive from a topological standpoint. Nevertheless, the 
notion of a surface that dissolved traditional distinctions like 
floor, wall, roof, was newly enabled by the computer. Further, 
in the case of the Embryological House, an early example of 
blobitecture, we see how disinterest in the geometry of the 
form enabled a new approach to variation and customization. 
Bernard Cache, paralleling Lynn, explains that “there ceases 
to be a static plan or model from which objects are made. 
Instead there emerges a ‘nonstandard mode of production’ 
where changing parameters in the computer make possible ‘a 
different shape for each object in the series’.”9 The topological 
blob surface is not only smooth in spatial terms, but its defor-
mation is continuous temporally.

Unfortunately, these explorations were truncated and focused 
primarily on the perception of motion that harkened back to 
a moment of actual animation in the computer. As Carpo 
explains, “it is about creating built forms, necessarily motion-
less, which can nevertheless induce the perception of motion 
by suggesting the ‘continual variation’ and ‘perpetual develop-
ment’ of a ‘form becoming’.”10 It is not difficult to understand 
why all flexibility and motion ceased when form exited the 
computer into physical space, but the emphasis on complex 
curvature foreclosed the possibility of topological thinking to 
open up a new line of inquiry to challenge and unlearn the 
disciplined, militarized, able, upright body.

INTERDISCIPLINARITY
The established discourse on folding became the source for 
a new collaboration for us, a architect/architectural historian 
and a geometer/topologist mathematician. A couple years 
ago, we began to meet and engage in a series of conversa-
tions around interesting intersections between mathematics 
and architecture. Topics ranged across the board, but the con-
cept of folding surfaces resonated between us as it constituted 
an already robust historical example of topological thinking in 
architectural theory and design. Casual conversations became 
more formalized when we co-taught a course in the Spring of 
2019. The title of the seminar-studio course, Folding, reflected 
this initial conceptual connection but also the ways in which 
we sought to expand and complicate it. Topics paired math-
ematical theorems with architectural histories, covering the 
relationship between linkages and space frames, uniqueness 
and interiority, and of course, rigidity and the fold. 

However, as we taught the class, we realized that our shared 
set of terms like rigidity, flexibility, smoothness, discreteness, 
and continuity, were often defined differently, or held so 
many definitions as to carry little meaning. In particular, the 
use of the notion of continuity, so fundamental to the theory 
of folding in architecture, produced significant confusion in 
the discipline of mathematics due to its rigorous formulation 
in calculus. Conversely, the mathematical notion of discrete-
ness, foundational to issues of measurability and computation, 
appeared in architecture merely to be a semantic distinction. 

Ultimately, the course served as a framework for a now ongoing 
collaborative book project, of which flexible polyhedra repre-
sent one chapter. For us it serves many functions: a means to 
unpack and clarify a set of terms that cut across architecture 
and math, a lens through which to reimagine the relationship 
between the body and space, and a challenge to develop a new 
approach to structure. The work is new, and ongoing, and we 
are excited to share it and welcome your feedback. 

THE OBLIQUE
Architecture, as a discipline, is largely and historically built on 
an association with the upright, postured body. Vitruvius went 
so far as to claim that it was precisely that humans stood rigidly 
erect that enabled the development of architecture: “Many 
came together into one place, having from nature this boon 
beyond other animals, that they should walk, not with head 
down, but upright, and should look upon the magnificence 
of the world and of the stars.”11 Since then, uprightness, as 
evidenced in the image of the Vitruvian Man, has haunted 
and influenced architecture and humans just the same. The 
outstretched human set within a cube illustrates the link 
between upright posture and structural rigidity. He remains 
poised within a similarly rigid cube even as you tip, tumble, 
or apply force.

Figure 2. Shoei Yoh. Exploded Axonometric, Odawara Municipal Sports 
Complex. 1990-1991. 
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That’s not to say that the body has always been, or continues to 
be, restricted by upright posture. Starting in the mid-19th cen-
tury, upright posture was tackled and dismantled, culminating 
with the association of the relaxed body with consumerism 
in the mid-20th century.12 Architecture, too, has flirted with 
the prioritization of comfort over propriety, from the addition 
of upholstering and springs in furniture to the discourse of 
inflatable architecture that encouraged humans to recline if 
not simply lay down and sprawl out. It is not coincidental that 
the lasting image of Archigram’s Suitaloon featured a relaxed 
and reclined David Greene, a human engaging in relaxed con-
sumption from a relaxed posture. Juxtaposed to the Vitruvian 
Man, the flexible bubble surrounding a reclined body regis-
ters a new alignment of architecture and the body invested in 
the collapse of upright rigidity. Nevertheless, the influence of 
the rigid upright body on architecture largely persists, most 
explicitly in the primacy of the right angle. For Le Corbusier, 
“the orthogonal and the rectilinear are geometric defenses 
against the random, material, and dirty effects of accidental 
relations… Anything that deviates is oblique…”13 Hence the 
epitome of Modernist form, a cubic polyhedron.

A higher-dimensional version of a polygon, the polyhedron is 
a region of space bounded by a finite number of flat polygonal 
faces. The most famous polyhedra are the five Platonic solids, 

all of which are convex, where line-of-sight between two points 
is always maintained. In 1813, Cauchy proved a remarkable 
property about polyhedra: if a convex polyhedron is built by 
simply matching pairs of edges of its flat polygonal face plates, 
a geometrically unique polyhedron would appear.14 In par-
ticular, although the angles along the edges are not provided 
by these matching instructions, they would automatically be 
determined. Thus, geometric information remarkably appears 
from simple matching information. His theorem asserts that 
any convex polyhedron constructed from face plates hinged 
along edges is rigid and unable to flex.

In the late 1960s, Paul Virilio partnered with Claude Parent 
to form the Architectural Principe Group (APG). Although it 
was short-lived, they produced a manifesto in which they 
detailed the oblique function.15 In direct reaction to the reign 
of the right angle, APG theorized oblique, hinged planes as 
an alternative to orthogonality. And even while the oblique, 
as ramp, featured prominently in Modernist design, it was 
largely deployed as a distinct and highly regulated second-
ary architectural object that served to reinforce the static 
orthogonality of the primary architectural space.16 Rejecting 
the two fundamental axes of Euclidean space, they proposed 
instead a single axis, the oblique, capable of achieving both 
horizontal and vertical conditions simultaneously. Applied to 

Figure 3. Architectural Principe Group. Oblique Circulation. 1971.
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architecture and the built environment, the oblique blurred 
the floor with the wall and the wall with the roof, delivering not 
only an entirely new kind of space, but a form that was almost 
entirely traversable. No longer was the inhabitant of the 
oblique restricted to accessing certain planes like the floor, or 
made to exit one to enter another, as in the case of the ramp. In 
the architecture of the oblique, inhabitants seamlessly moved 
from plane to plane, each constantly redefined and reoriented 
as floor became wall became roof became floor, all the while 
retaining rigidity.

Cauchy may have settled the matter of rigidity for convex poly-
hedra, but over the next 150 years, mathematicians wondered 
about the nonconvex case. Every nonconvex example that was 
constructed proved to be rigid, though a general theory was 
not established. Herman Gluck proved in 1975 that “almost all” 
polyhedra were rigid, making it tantalizingly feasible that rigid-
ity is independent of convexity.17 But when Robert Connelly 
announced the construction of a flexible polyhedron just 
two years later, the mathematics community was stunned.18 
Modifying a self-intersecting flexible octahedron (designed in 
1897 by the French engineer Raoul Bricard), Connelly found 
the first example of a true flexible polyhedron, consisting of 18 
triangular faces.19 Subsequent reductions led to a 14-triangle, 
9-vertex flexible nonconvex polyhedron constructed by Klaus 
Steffen, the simplest example possible.20

The unique capability of flexible polyhedra forces architec-
ture to confront its long-standing presumption and reliance 
on rigidity.  Although Virilio and Parent don’t explicitly frame 
the oblique function as a product of topological thinking, 
and only begin to articulate the new continuous fluidity, the 
pair undoubtedly produced a kind of topological surface not 
unlike those by later theorists of the fold. The oblique does 
not smoothly transition from plane to plane like the stereo-
typical image of the topological surface, yet Henry Cobb 
explains how a sharp crease can still be the product of folding 
a continuous surface: “A fundamental rule for an architectural 
manifestation of folding is that the folding must never occur 
at a joint between the elements which make up the surface 
to be folded. A joint is a void between two pieces and cannot 
be folded. Any fold which coincides with a joint is not a fold 
but the manipulation of two separate pieces.”21 Although this 
is but a semantic distinction topologically, it does reveal how 
the oblique might be understood topologically from within 
the architectural discourse, despite the presence of sharp, 
defined edges. We might add an additional diagram to Figure 
1 that illustrates a flat-sided polyhedra without the designated 
decomposable points at the corners. In fact, material continu-
ity was fundamental to the oblique function, with examples 
often registered in poured concrete or tectonic structures 
wrapped with carpet.

The oblique even entailed a shift in design from geometric 
proportions to gravitational force. Contrary to architecture 

associated with figures like the Vitruvian Man or “le modulor” 
that produced a system of rigid mathematical proportions of 
a universal body at rest, APG associated the oblique with the 
figure of Neitzsche’s dancer.22 By tilting the ground plane, APG 
theorized, the force of gravity was made felt. The body was no 
longer allowed to remain easily rigid and upright; movement 
is induced and only made more or less difficult depending on 
the body’s orientation to the plane. The oblique, a challenge 
to upright form, challenged the upright body, throwing it into 
disequilibrium. Diagrams were supplemented and brought to 
life by Nicole Parent who developed a style of dance on the 
oblique illustrating how instability could yield new potential 
bodily movements and new moments of equilibrium between 
the body and the space.23 In the still moment between moving 
up and down the oblique, Nicole Parent takes on a contrap-
posto stance. With hips thrown to one side, the opposing leg 
that would normally bend at the knee, now fully extends to 
meet the sloping plane. Herein, the body achieves equilibrium, 
like the Vitruvian Man, but without rigid uprightness. 

The contrapposto stance that once constituted a rebellious 
public presentation for its looseness in a world of upright, 
rigid posture, becomes now a more natural and beneficial 
stance on the oblique. Using the body’s linkages to slouch to 
the side achieves a counterpoise to the slope. The benefits 
of the new relationship of the body to the space proposed by 
APG extended even to daughter Chloe Parent. Even though the 
oblique was never quite realized at a large scale in a ground-up 
building, Claude Parent infilled the living areas of his family’s 
apartment. A long-time sufferer of vertigo, she recalls today 
how growing up on the oblique did not have the intended 
effects of disequilibrium. In fact, quite the opposite, it aided 
her balance.24 Although we don’t do disability studies, we rec-
ognize and are interested in the potentialities of the oblique, 
and further, the flexible polyhedra, for further intersectional 
work that challenges the primacy of the upright, disciplined, 
abled body in architecture.

The oblique function, unfortunately, was rather short-lived. 
Despite proposing a certain kind of continuity, playing with 
mass and force, and theorizing a new relationship between 
the body and space, it would be later reframed as merely 
a precursor to the Deleuzian fold and blobitecture. Virilio 
accepts and laments the legacy of their topological approach: 
“Today the oblique is everywhere and it’s a catastrophe. But 
only because of what has been made of it - it’s all blobs, blobs, 
blobs.”25 We offer up flexible polyhedra as an alternative 
legacy to the oblique function. Flexible polyhedra, as archi-
tectural space, have the potential to extend the oblique and 
the contrapposto stance. The contrapposto body in motion 
is put in relation to a contrapposto form also in motion. Like 
blobs, flexible polyhedra are topologically the same: continu-
ous, folded spheres. Subjected to force, the apparently rigid 
polyhedron flexes under the pressure. Oriented to produce 
a flat floor, the polyhedron gives way to the oblique. As it 
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slouches into a contrapposto stance, so too does the body 
inside. Counterpoise in the form forces counterpoise in the 
body, and vice versa. 

Moreover, unlike blobs, which eliminated geometry in favor 
of differential calculus to produce virtual flexibility, flexible 
polyhedra maintain measurable geometry while being also 
physically flexible. Importantly, flexible polyhedra are distinct 
from collapsible structures in that they are capable of trans-
forming the space inside without changing the amount. In 
1997, Idzhad Sabitov proved that polyhedral volume does not 
change as it flexes as we might assume.26 In flexible polyhedra, 
Jeffrey Kipnis gets his more inclusive architecture: “I’m tired 
of every building telling me I should be young and fit and have 
good posture. I’m not young, I’m not fit, I like sitting hunched 
over, I’m often drunk and I like to lean on stuff.”27 Flexible poly-
hedra actively slouch alongside their inhabitants.

FLEXIBLE POLYHEDRA
Returning to the blob, flexible polyhedra reveal the false dis-
tinction in the dichotomy set up between geometry/tectonics 
and topology/force. Put simply, and to borrow a phrase, flex-
ible polyhedra are both square and groovy.28 Continuous, 
non-developable surfaces aligned with emerging digital tools 
to produce “animate forms” generated through a manipulation 

of forces rather than measured geometries, even if the resul-
tant structure retained, or regained rigidity. Forms are today 
rolled, stretched, bent, and more, in attempts to re-animate 
them to their pre-baked state in the computer. The same 
thinking and design approach that unleashed a radical collec-
tion of double-curved surfaces put them back into the world 
of geometry, just with new complex contributions.29 

Architecture remains fundamentally a geometric product. This 
is not necessarily a surprise, nor a problem. But, the same blobs 
that were so good at simulating movement now require amaz-
ing amounts of technology to animate them because of their 
double-curved geometric complexity. It is not without irony 
that virtual flexibility foreclosed the possibility of actual flex-
ibility. In the past quarter-century, with the advent and growth 
of computational powers, there has been a movement away 
from the continuous (blobs) to the discrete (polyhedra). The 
underlying reason is the emphasis on discretization, the pro-
cess of making continuous features of an object into discrete 
features, making them suitable for computations.  In particu-
lar, a continuous object (Fig. 1d) goes through two types of 
transformations: First, a decomposition into finite pieces, for 
data storage (Fig. 1c). Yoh’s roof structures actually take on 
new importance by maintaining the geometric “creases” that 
allow for decomposability of the surface while allowing for the 

Figure 4. Nicole Parent. L’Inclipan. 1971.
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recreation of the smooth folded surface; Second, a lineariza-
tion of these pieces, for ease of computation (Fig. 1a). Most 
calculations and computations in geometry are handled in the 
linear category (points, lines, planes, polygons), moving from 
geometric analysis (such as calculus) into algorithmic analysis.

Thus, the movement of roof covering (of polyhedral structures) 
to topological blobs is now fully reversed, with a harkening 
back to flat structures. In the midst of this, the flexible polyhe-
dron offers a way forward for the oblique that leads to literal 
movement that is at the same time both simpler geometri-
cally than doubly-curved blobs, and more complex because 
it is continuous both in space and time. Some of the greatest 
jewels of mathematics have come from recovering geometric 
data from an object’s discretized state. The works by Euler in 
the 1750s (classification of manifolds), by Carl Friedrich Gauss 
in the 1820s (curvature of surfaces), and by Marston Morse in 
the 1920s (critical point analysis) show that discrete structures 
are worthy of pursuit.30

In 2013, Log published a conversation between Lynn and 
Peter Eisenman, in which he claimed: “If I can take a ride in 
a driverless car on a public street, then I see no reason my 
building can’t wiggle a little.”31 His RV House from the same 
year is essentially the animation of a previously baked animate 
form. A rigid spherical shell is spun and rotated on a dual-axis 
gyro base. And yet, the house abides by and reinforces the 
notion of upright rigid posture. Rather than tilt the plane and 
force the body into non-upright positions and motion, the 
form seamlessly rotates under the occupant’s feet with the 
body remaining perfectly upright in space. By contrast, the 
flexible polyhedron yields a kind of dumb animation. It requires 
no elaborate robots nor complicated tectonics, being at the 
same time both rigid (along its faces) and flexible (along its 
edges).32 Further, flexible polyhedra propose a new relation-
ship between the body and space. It does not move, or shift, 
except under the exertion of force from the body. That is to 
say, it enters into a contrapposto relationship to the body. In 
between the extreme ends of flexibility where rigidity of the 

object reveals itself, a weighted balance is required. Where in 
the oblique function the architecture is rigid and the body is 
put into motion, and in the RV House the architecture is put 
into motion and the body remains upright, the flexible poly-
hedron forces the space and the body into a contrapposto 
stance together.

The research presented herein represents just the beginning 
and is meant to unpack, clarify, and theorize the flexible poly-
hedron as it intersects with the discipline of architecture. Like 
Deleuze’s fold, we see significant potential for new kinds of 
architectural form, and more importantly, a new kind of rela-
tionship between the body and space. Our research is ongoing 
as we incorporate undergraduate research students to explore 
the structural and spatial possibilities. We are currently work-
ing on the design and fabrication of a full-scale temporary 
pavilion to test materials, connections, and the effects of 
transformable space on the body. The process parallels a simi-
lar, unbuilt proposal by APG to build and temporarily inhabit an 
oblique form to test the theory of the oblique function. 

Figure 5. Elevations of Steffen Polyhedra. Image by Makenzie Nickel. 
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